
Cannabis May Enhance Efficacy Of Antibiotics To Fight Resistant Bacteria
- byDoctor News Daily Team
- 18 February, 2025
- 0 Comments
- 0 Mins

The cannabinoid cannabidiol (CBD) is characterised in a new study as a helper compound against resistant bacteria. Helper compounds are non-antibiotic compounds with the capability of enhancing the efficacy of antibiotics.
Since it's discovery in 1928 penicillin has saved millions of lives from fatal infections world-wide. However, with time bacteria have developed mechanisms to escape the effects of antibiotics - they have become resistant.
With fewer antibiotics available to treat resistant bacterial infections, alternative strategies are being explored and helper compounds are attracting attention.
How to boost antibiotics
One such helper compound has been suspected to be cannabidiol (CBD); a cannabinoid from the cannabis plant. Now a research team from University of Southern Denmark, has published a scientific study proving the effect of CBD.
Janne Kudsk Klitgaard is Principal Investigator and corresponding author. First author is PhD student Claes Søndergaard Wassmann. The study is published in the journal Scientific Reports.
When we combined CBD and antibiotics, we saw a more powerful effect than when treating with antibiotics alone. So, in order to kill a certain number of bacteria, we needed less antibiotics, they say.
Bacteria clones spread globally
In the study, CBD was used to enhance the effect of the antibiotic bacitracin against Staphylococcus aureus bacteria; a major human pathogen that frequently causes community- and hospital-acquired disease.
Multidrug-resistant clones of this pathogen have spread globally. In some countries, treatment of bacterial infections with these resistant bacteria are difficult and the problem is projected to be an ever-larger problem in the future.
According to the researchers, the combination of CBD and antibiotics may be a novel treatment of infections with antibiotic resistant bacteria.
How do the bacteria die?
Three things happened with the Staphylococcus aureus bacteria, when the researchers treated them with the combination in their study:
The bacteria could no longer divide normally.
The expression of certain key genes (cell division and autolysis genes) in the bacteria was lowered.
The bacterial membrane became unstable.
Anti-resistance must be stopped
According to the researchers, overuse of antibiotics is the main cause of antibiotic resistance.
If we combine an antibiotic with a helper compound, that enhances the effect of the antibiotic, we need less antibiotic to achieve the same effect. This may contribute to the development of fewer resistant bacteria, says Janne Kudsk Klitgaard.
For more details click on the link: http://dx.doi.org/10.1038/s41598-020-60952-0
Disclaimer: This website is designed for healthcare professionals and serves solely for informational purposes.
The content provided should not be interpreted as medical advice, diagnosis, treatment recommendations, prescriptions, or endorsements of specific medical practices. It is not a replacement for professional medical consultation or the expertise of a licensed healthcare provider.
Given the ever-evolving nature of medical science, we strive to keep our information accurate and up to date. However, we do not guarantee the completeness or accuracy of the content.
If you come across any inconsistencies, please reach out to us at
admin@doctornewsdaily.com.
We do not support or endorse medical opinions, treatments, or recommendations that contradict the advice of qualified healthcare professionals.
By using this website, you agree to our
Terms of Use,
Privacy Policy, and
Advertisement Policy.
For further details, please review our
Full Disclaimer.
Tags:

Recent News
Normal-Tension Glaucoma Closely Associated With Co...
- 10 October, 2022
Air Pollution Tied To Increased Risk Of Premature...
- 24 May, 2023
NEET PG 2024: NBE Opens Pre-Final Edit Window
- 30 May, 2024

Daily Newsletter
Get all the top stories from Blogs to keep track.
0 Comments
Post a comment
No comments yet. Be the first to comment!