October 31, 2025

Get In Touch

AI Can Accurately Predict Adverse Outcomes Following Abdominal Hernia Surgery

Machine Learning in Hernia Recurrence Prediction

CHICAGO: Machine Learning in Hernia Recurrence Prediction

Machine learning (ML) models developed by surgeons at the University of Texas MD Anderson Cancer Center in Houston have shown a high level of accuracy in predicting which types of patients are most likely to have a hernia recurrence or other complications. Research findings are reported in an "article in press" published on the website of the Journal of the American College of Surgeons (JACS).

Repair of ventral hernias—hernias that occur when a bulge emerges through the abdominal muscles—is a common operation, with more than 400,000 performed annually in the U.S. However, more than a third of these types of hernias end up happening again or patients experience some other type of postsurgery complication.

"We found that the machine learning algorithm, trained by using our own data, could accurately predict occurrence of complications after complex abdominal wall repair," said lead study author Abbas M. Hassan, MD, postdoctoral fellow and PhD candidate, department of plastic surgery, MD Anderson. "It was also able to identify factors associated with poor outcomes."

Dr. Hassan and colleagues say this is the first study to describe the use of ML to predict postsurgery complications of abdominal wall reconstruction.

Ventral hernias can occur in patients who've had an abdominal operation for something other than hernia repair, such as gall bladder removal or, in many cases at MD Anderson, to remove a tumor and nearby tissue, or even part of an organ. The surgeons noted that with more than 4 million abdominal operations performed in the United States annually, the demand for abdominal wall reconstruction is growing.

For further information, click on the following link: 10.1097/XCS.0000000000000141

Disclaimer: This website is designed for healthcare professionals and serves solely for informational purposes.
The content provided should not be interpreted as medical advice, diagnosis, treatment recommendations, prescriptions, or endorsements of specific medical practices. It is not a replacement for professional medical consultation or the expertise of a licensed healthcare provider.
Given the ever-evolving nature of medical science, we strive to keep our information accurate and up to date. However, we do not guarantee the completeness or accuracy of the content.
If you come across any inconsistencies, please reach out to us at admin@doctornewsdaily.com.
We do not support or endorse medical opinions, treatments, or recommendations that contradict the advice of qualified healthcare professionals.
By using this website, you agree to our Terms of Use, Privacy Policy, and Advertisement Policy.
For further details, please review our Full Disclaimer.

0 Comments

Post a comment

Please login to post a comment.

No comments yet. Be the first to comment!